Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 377(6612): 1290-1298, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36007018

RESUMO

Lysosomes coordinate cellular metabolism and growth upon sensing of essential nutrients, including cholesterol. Through bioinformatic analysis of lysosomal proteomes, we identified lysosomal cholesterol signaling (LYCHOS, previously annotated as G protein-coupled receptor 155), a multidomain transmembrane protein that enables cholesterol-dependent activation of the master growth regulator, the protein kinase mechanistic target of rapamycin complex 1 (mTORC1). Cholesterol bound to the amino-terminal permease-like region of LYCHOS, and mutating this site impaired mTORC1 activation. At high cholesterol concentrations, LYCHOS bound to the GATOR1 complex, a guanosine triphosphatase (GTPase)-activating protein for the Rag GTPases, through a conserved cytoplasm-facing loop. By sequestering GATOR1, LYCHOS promotes cholesterol- and Rag-dependent recruitment of mTORC1 to lysosomes. Thus, LYCHOS functions in a lysosomal pathway for cholesterol sensing and couples cholesterol concentrations to mTORC1-dependent anabolic signaling.


Assuntos
Colesterol , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Receptores Acoplados a Proteínas G , Colesterol/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteoma/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
2.
Front Endocrinol (Lausanne) ; 12: 653557, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959097

RESUMO

Insulin and muscle contractions mediate glucose transporter 4 (GLUT4) translocation and insertion into the plasma membrane (PM) for glucose uptake in skeletal muscles. Muscle contraction results in AMPK activation, which promotes GLUT4 translocation and PM insertion. However, little is known regarding AMPK effectors that directly regulate GLUT4 translocation. We aim to identify novel AMPK effectors in the regulation of GLUT4 translocation. We performed biochemical, molecular biology and fluorescent microscopy imaging experiments using gain- and loss-of-function mutants of tropomodulin 3 (Tmod3). Here we report Tmod3, an actin filament capping protein, as a novel AMPK substrate and an essential mediator of AMPK-dependent GLUT4 translocation and glucose uptake in myoblasts. Furthermore, Tmod3 plays a key role in AMPK-induced F-actin remodeling and GLUT4 insertion into the PM. Our study defines Tmod3 as a key AMPK effector in the regulation of GLUT4 insertion into the PM and glucose uptake in muscle cells, and offers new mechanistic insights into the regulation of glucose homeostasis.


Assuntos
Membrana Celular/metabolismo , Transportador de Glucose Tipo 4/sangue , Mioblastos/metabolismo , Tropomodulina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Transporte Biológico , Glucose/metabolismo , Glutationa/metabolismo , Humanos , Insulina/metabolismo , Lentivirus/metabolismo , Espectrometria de Massas , Camundongos , Músculo Esquelético/metabolismo , Fosforilação , Transporte Proteico , Transdução de Sinais
3.
Dev Cell ; 56(3): 260-276.e7, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33308480

RESUMO

Lysosomes promote cellular homeostasis through macromolecular hydrolysis within their lumen and metabolic signaling by the mTORC1 kinase on their limiting membranes. Both hydrolytic and signaling functions require precise regulation of lysosomal cholesterol content. In Niemann-Pick type C (NPC), loss of the cholesterol exporter, NPC1, causes cholesterol accumulation within lysosomes, leading to mTORC1 hyperactivation, disrupted mitochondrial function, and neurodegeneration. The compositional and functional alterations in NPC lysosomes and nature of aberrant cholesterol-mTORC1 signaling contribution to organelle pathogenesis are not understood. Through proteomic profiling of NPC lysosomes, we find pronounced proteolytic impairment compounded with hydrolase depletion, enhanced membrane damage, and defective mitophagy. Genetic and pharmacologic mTORC1 inhibition restores lysosomal proteolysis without correcting cholesterol storage, implicating aberrant mTORC1 as a pathogenic driver downstream of cholesterol accumulation. Consistently, mTORC1 inhibition ameliorates mitochondrial dysfunction in a neuronal model of NPC. Thus, cholesterol-mTORC1 signaling controls organelle homeostasis and is a targetable pathway in NPC.


Assuntos
Colesterol/metabolismo , Homeostase , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Organelas/metabolismo , Transdução de Sinais , Adulto , Animais , Células Cultivadas , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Modelos Biológicos , Neurônios/metabolismo , Proteína C1 de Niemann-Pick , Proteólise
4.
Science ; 366(6468): 971-977, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31672913

RESUMO

The tumor suppressor folliculin (FLCN) enables nutrient-dependent activation of the mechanistic target of rapamycin complex 1 (mTORC1) protein kinase via its guanosine triphosphatase (GTPase) activating protein (GAP) activity toward the GTPase RagC. Concomitant with mTORC1 inactivation by starvation, FLCN relocalizes from the cytosol to lysosomes. To determine the lysosomal function of FLCN, we reconstituted the human lysosomal FLCN complex (LFC) containing FLCN, its partner FLCN-interacting protein 2 (FNIP2), and the RagAGDP:RagCGTP GTPases as they exist in the starved state with their lysosomal anchor Ragulator complex and determined its cryo-electron microscopy structure to 3.6 angstroms. The RagC-GAP activity of FLCN was inhibited within the LFC, owing to displacement of a catalytically required arginine in FLCN from the RagC nucleotide. Disassembly of the LFC and release of the RagC-GAP activity of FLCN enabled mTORC1-dependent regulation of the master regulator of lysosomal biogenesis, transcription factor E3, implicating the LFC as a checkpoint in mTORC1 signaling.


Assuntos
Lisossomos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Microscopia Crioeletrônica , Citoplasma/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Guanosina Difosfato/metabolismo , Humanos , Lisossomos/química , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/química , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Transdução de Sinais
5.
Nat Cell Biol ; 21(10): 1206-1218, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31548609

RESUMO

Cholesterol activates the master growth regulator, mTORC1 kinase, by promoting its recruitment to the surface of lysosomes by the Rag guanosine triphosphatases (GTPases). The mechanisms that regulate lysosomal cholesterol content to enable mTORC1 signalling are unknown. Here, we show that oxysterol binding protein (OSBP) and its anchors at the endoplasmic reticulum (ER), VAPA and VAPB, deliver cholesterol across ER-lysosome contacts to activate mTORC1. In cells lacking OSBP, but not other VAP-interacting cholesterol carriers, the recruitment of mTORC1 by the Rag GTPases is inhibited owing to impaired transport of cholesterol to lysosomes. By contrast, OSBP-mediated cholesterol trafficking drives constitutive mTORC1 activation in a disease model caused by the loss of the lysosomal cholesterol transporter, Niemann-Pick C1 (NPC1). Chemical and genetic inactivation of OSBP suppresses aberrant mTORC1 signalling and restores autophagic function in cellular models of Niemann-Pick type C (NPC). Thus, ER-lysosome contacts are signalling hubs that enable cholesterol sensing by mTORC1, and targeting the sterol-transfer activity of these signalling hubs could be beneficial in patients with NPC.


Assuntos
Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Doenças de Niemann-Pick/metabolismo , Receptores de Esteroides/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Proteína C1 de Niemann-Pick , Receptores de Esteroides/genética , Transdução de Sinais , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
6.
Cancer Discov ; 7(11): 1266-1283, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28899863

RESUMO

Lysosomes serve dual roles in cancer metabolism, executing catabolic programs (i.e., autophagy and macropinocytosis) while promoting mTORC1-dependent anabolism. Antimalarial compounds such as chloroquine or quinacrine have been used as lysosomal inhibitors, but fail to inhibit mTOR signaling. Further, the molecular target of these agents has not been identified. We report a screen of novel dimeric antimalarials that identifies dimeric quinacrines (DQ) as potent anticancer compounds, which concurrently inhibit mTOR and autophagy. Central nitrogen methylation of the DQ linker enhances lysosomal localization and potency. An in situ photoaffinity pulldown identified palmitoyl-protein thioesterase 1 (PPT1) as the molecular target of DQ661. PPT1 inhibition concurrently impairs mTOR and lysosomal catabolism through the rapid accumulation of palmitoylated proteins. DQ661 inhibits the in vivo tumor growth of melanoma, pancreatic cancer, and colorectal cancer mouse models and can be safely combined with chemotherapy. Thus, lysosome-directed PPT1 inhibitors represent a new approach to concurrently targeting mTORC1 and lysosomal catabolism in cancer.Significance: This study identifies chemical features of dimeric compounds that increase their lysosomal specificity, and a new molecular target for these compounds, reclassifying these compounds as targeted therapies. Targeting PPT1 blocks mTOR signaling in a manner distinct from catalytic inhibitors, while concurrently inhibiting autophagy, thereby providing a new strategy for cancer therapy. Cancer Discov; 7(11); 1266-83. ©2017 AACR.See related commentary by Towers and Thorburn, p. 1218This article is highlighted in the In This Issue feature, p. 1201.


Assuntos
Lisossomos/efeitos dos fármacos , Melanoma/tratamento farmacológico , Proteínas de Membrana/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Tioléster Hidrolases/antagonistas & inibidores , Animais , Antimaláricos/administração & dosagem , Antineoplásicos/administração & dosagem , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cloroquina/administração & dosagem , Humanos , Lisossomos/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Melanoma/genética , Melanoma/patologia , Proteínas de Membrana/genética , Camundongos , Terapia de Alvo Molecular , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tioléster Hidrolases/genética
7.
J Cell Biol ; 214(6): 653-64, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27621362

RESUMO

Lysosomes are membrane-bound organelles found in every eukaryotic cell. They are widely known as terminal catabolic stations that rid cells of waste products and scavenge metabolic building blocks that sustain essential biosynthetic reactions during starvation. In recent years, this classical view has been dramatically expanded by the discovery of new roles of the lysosome in nutrient sensing, transcriptional regulation, and metabolic homeostasis. These discoveries have elevated the lysosome to a decision-making center involved in the control of cellular growth and survival. Here we review these recently discovered properties of the lysosome, with a focus on how lysosomal signaling pathways respond to external and internal cues and how they ultimately enable metabolic homeostasis and cellular adaptation.


Assuntos
Metabolismo Energético , Lisossomos/metabolismo , Adaptação Fisiológica , Aminoácidos/metabolismo , Animais , Regulação da Expressão Gênica , Homeostase , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/metabolismo , Neuropeptídeos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica
8.
Biochem J ; 471(3): 381-9, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26330614

RESUMO

Adiponectin, a hormone secreted from adipocytes and released at a high rate into the circulation, plays a pivotal role in maintaining insulin sensitivity at the whole-body level. Despite the importance of this adipokine in metabolic homoeostasis, the mechanism of its secretion from adipocytes remains largely unclear. In the present study, we investigated the subcellular localization of adiponectin, and its secretion regulation in 3T3-L1-differentiated adipocytes, using biochemical methods and fluorescence microscopic imaging. We show that adiponectin is localized in vesicular compartments with no apparent overlap with the Golgi apparatus or endosomes. Moreover, adiponectin-containing vesicles are enriched in two distinct pools: one at the plasma membrane (PM) and the other co-fractionating with endoplasmic reticulum membranes. When viewed under a total internal refection fluorescence microscope, a subset of adiponectin-Venus vesicles is readily observed in proximity to PMs, and could be released in response to insulin. Insulin-stimulated adiponectin release appears to be from a pre-existing pool of vesicles, and is not dependent on new protein synthesis, because adiponectin mRNA levels remain unchanged over a 6-h period of insulin treatment, and inhibition of protein synthesis has no effect on adiponectin release. Disruption of insulin signalling by inhibitors of phosphoinositide 3-kinase and protein kinase B (Akt)-1/2 abrogates the stimulated release of adiponectin. Taken together, our results show that adiponectin is stored in a unique vesicular compartment, and released through a regulated exocytosis pathway that is dependent on insulin signalling.


Assuntos
Adiponectina/genética , Diferenciação Celular/genética , Exocitose/genética , Insulina/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Adiponectina/metabolismo , Animais , Membrana Celular/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Humanos , Camundongos , Fosfatidilinositol 3-Quinases , Transdução de Sinais
9.
Mol Cell Biol ; 35(10): 1686-99, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25733684

RESUMO

In obesity, adipocyte hypertrophy and proinflammatory responses are closely associated with the development of insulin resistance in adipose tissue. However, it is largely unknown whether adipocyte hypertrophy per se might be sufficient to provoke insulin resistance in obese adipose tissue. Here, we demonstrate that lipid-overloaded hypertrophic adipocytes are insulin resistant independent of adipocyte inflammation. Treatment with saturated or monounsaturated fatty acids resulted in adipocyte hypertrophy, but proinflammatory responses were observed only in adipocytes treated with saturated fatty acids. Regardless of adipocyte inflammation, hypertrophic adipocytes with large and unilocular lipid droplets exhibited impaired insulin-dependent glucose uptake, associated with defects in GLUT4 trafficking to the plasma membrane. Moreover, Toll-like receptor 4 mutant mice (C3H/HeJ) with high-fat-diet-induced obesity were not protected against insulin resistance, although they were resistant to adipose tissue inflammation. Together, our in vitro and in vivo data suggest that adipocyte hypertrophy alone may be crucial in causing insulin resistance in obesity.


Assuntos
Adipócitos/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos não Esterificados/farmacologia , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina , Células 3T3-L1 , Adipócitos/imunologia , Animais , Membrana Celular/metabolismo , Citocinas/metabolismo , Gorduras na Dieta/administração & dosagem , Técnicas In Vitro , Gotículas Lipídicas/metabolismo , Masculino , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Obesidade/induzido quimicamente , Obesidade/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
10.
Nat Commun ; 6: 5951, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25575350

RESUMO

Akt2 and its downstream effectors mediate insulin-stimulated GLUT4-storage vesicle (GSV) translocation and fusion with the plasma membrane (PM). Using mass spectrometry, we identify actin-capping protein Tropomodulin 3 (Tmod3) as an Akt2-interacting partner in 3T3-L1 adipocytes. We demonstrate that Tmod3 is phosphorylated at Ser71 on insulin-stimulated Akt2 activation, and Ser71 phosphorylation is required for insulin-stimulated GLUT4 PM insertion and glucose uptake. Phosphorylated Tmod3 regulates insulin-induced actin remodelling, an essential step for GSV fusion with the PM. Furthermore, the interaction of Tmod3 with its cognate tropomyosin partner, Tm5NM1 is necessary for GSV exocytosis and glucose uptake. Together these results establish Tmod3 as a novel Akt2 effector that mediates insulin-induced cortical actin remodelling and subsequent GLUT4 membrane insertion. Our findings suggest that defects in cytoskeletal remodelling may contribute to impaired GLUT4 exocytosis and glucose uptake.


Assuntos
Actinas/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tropomodulina/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Plaquetas/metabolismo , Membrana Celular/metabolismo , Exocitose , Glucose/metabolismo , Humanos , Lentivirus/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Fosforilação
11.
Biochem J ; 464(2): 179-92, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25220164

RESUMO

Extensive actin cytoskeleton remodelling occurs during adipocyte development. We have previously shown that disruption of stress fibres by the actin-severing protein cofilin is a requisite step in adipogenesis. However, it remains unclear whether actin nucleation and assembly into the cortical structure are essential for adipocyte development. In the present study we investigated the role of cortical actin assembly and of actin nucleation by the actin-related protein 2/3 (Arp2/3) complex in adipogenesis. Cortical actin structure formation started with accumulation of filamentous actin (F-actin) patches near the plasma membrane during adipogenesis. Depletion of Arp2/3 by knockdown of its subunits Arp3 or ARPC3 strongly impaired adipocyte differentiation, although adipogenesis-initiating factors were unaffected. Moreover, the assembly of F-actin-rich structures at the plasma membrane was suppressed and the cortical actin structure poorly developed after adipogenic induction in Arp2/3-deficient cells. Finally, we provide evidence that the cortical actin cytoskeleton is essential for efficient glucose transporter 4 (GLUT4) vesicle exocytosis and insulin signal transduction. These results show that the Arp2/3 complex is an essential regulator of adipocyte development through control of the formation of cortical actin structures, which may facilitate nutrient uptake and signalling events.


Assuntos
Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteína 2 Relacionada a Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Adipogenia , Citoesqueleto de Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/química , Adipócitos/metabolismo , Animais , Diferenciação Celular/genética , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Camundongos , Transdução de Sinais
12.
Biochem J ; 458(3): 491-8, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24405299

RESUMO

Numerous studies have focused on the regulation of leptin signalling and the functions of leptin in energy homoeostasis; however, little is known about how leptin secretion is regulated. In the present study we studied leptin storage and secretion regulation in 3T3-L1 and primary adipocytes. Leptin is stored in membrane-bound vesicles that are localized predominantly in the ER (endoplasmic reticulum) and close to the plasma membrane of both 3T3-L1 and primary adipocytes. Insulin increases leptin secretion as early as 15 min without affecting the leptin mRNA level. Interestingly, treatment with the protein synthesis inhibitor cycloheximide and the ER-Golgi trafficking blocker Brefeldin A inhibit both basal and ISLS (insulin-stimulated leptin secretion), suggesting that insulin stimulates leptin secretion by up-regulating leptin synthesis and that leptin-containing vesicles go through the ER-Golgi route. The PI3K (phosphoinositide 3-kinase)/Akt, but not MAPK (mitogen-activated protein kinase), pathway is involved in ISLS in vitro and in vivo. Although Ca2+ triggers synaptic vesicle and secretory granule exocytosis, Ca2+ influx alone is not sufficient to induce leptin secretion. Remarkably, Ca2+ is required for ISLS possibly due to its involvement in insulin-stimulated Akt phosphorylation. We conclude that insulin stimulates leptin release through the PI3K/Akt pathway and that Ca2+ is required for robust Akt phosphorylation and leptin secretion.


Assuntos
Cálcio/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células 3T3-L1 , Adipócitos Brancos/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Complexo de Golgi/metabolismo , Insulina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Transporte Proteico , Vesículas Secretórias/metabolismo , Transdução de Sinais
13.
Bioarchitecture ; 4(6): 210-4, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26280982

RESUMO

It is well established that insulin-induced remodeling of actin filaments into a cortical mesh is required for insulin-stimulated GLUT4 exocytosis. Akt2 and its downstream effectors play a pivotal role in mediating the translocation and membrane fusion of GLUT4-storage vesicle (GSV). However, the direct downstream effector underlying the event of cortical actin reorganization has not been elucidated. In a recent study in Nature Communications, (1) Lim et al identify Tropomodulin3 (Tmod3) as a downstream target of the Akt2 kinase and describe the role of this pointed-end actin-capping protein in regulating insulin-dependent exocytosis of GSVs in adipocytes through the remodeling of the cortical actin network. Phosphorylation of Tmod3 by Akt2 on Ser71 modulates insulin-induced actin remodeling, a key step for GSV fusion with the plasma membrane (PM). Furthermore, the authors establish Tm5NM1 (Tpm3.1 in new nomenclature) (2) as the cognate tropomyosin partner of Tmod3, and an essential role of Tmod3-Tm5NM1 interaction for GSV exocytosis and glucose uptake. This study elucidates a novel effector of Akt2 that provides a direct mechanistic link between Akt2 signaling and actin reorganization essential for vesicle fusion, and suggests that a subset of actin filaments with specific molecular compositions may be dedicated for the process of vesicle fusion.


Assuntos
Actinas/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tropomodulina/metabolismo , Animais , Humanos , Masculino
14.
J Endocrinol ; 219(2): 131-43, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23959078

RESUMO

Neonatal overnutrition results in accelerated development of high-fat diet (HFD)-induced metabolic defects in adulthood. To understand whether the increased susceptibility was associated with aggravated inflammation and dysregulated lipid metabolism, we studied metabolic changes and insulin signaling in a chronic postnatal overnutrition (CPO) mouse model. Male Swiss Webster pups were raised with either three pups per litter to induce CPO or ten pups per litter as control (CTR) and weaned to either low-fat diet (LFD) or HFD. All animals were killed on the postnatal day 150 (P150) except for a subset of mice killed on P15 for the measurement of stomach weight and milk composition. CPO mice exhibited accelerated body weight gain and increased body fat mass prior to weaning and the difference persisted into adulthood under conditions of both LFD and HFD. As adults, insulin signaling was more severely impaired in epididymal white adipose tissue (WAT) from HFD-fed CPO (CPO-HFD) mice. In addition, HFD-induced upregulation of pro-inflammatory cytokines was exaggerated in CPO-HFD mice. Consistent with greater inflammation, CPO-HFD mice showed more severe macrophage infiltration than HFD-fed CTR (CTR-HFD) mice. Furthermore, when compared with CTR-HFD mice, CPO-HFD mice exhibited reduced levels of several lipogenic enzymes in WAT and excess intramyocellular lipid accumulation. These data indicate that neonatal overnutrition accelerates the development of insulin resistance and exacerbates HFD-induced metabolic defects, possibly by worsening HFD-induced inflammatory response and impaired lipid metabolism.


Assuntos
Animais Recém-Nascidos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/efeitos adversos , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Hipernutrição/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Citocinas/metabolismo , Gorduras na Dieta/farmacologia , Modelos Animais de Doenças , Insulina/fisiologia , Resistência à Insulina/fisiologia , Transtornos do Metabolismo dos Lipídeos/etiologia , Transtornos do Metabolismo dos Lipídeos/metabolismo , Masculino , Camundongos , Músculo Esquelético/metabolismo , Transdução de Sinais/fisiologia
15.
Endocrinology ; 151(5): 2050-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20215569

RESUMO

Maintenance of glucose homeostasis depends on adequate amount and precise pattern of insulin secretion, which is determined by both beta-cell secretory processes and well-developed microvascular network within endocrine pancreas. The development of highly organized microvasculature and high degrees of capillary fenestrations in endocrine pancreas is greatly dependent on vascular endothelial growth factor-A (VEGF-A) from islet cells. However, it is unclear how VEGF-A production is regulated in endocrine pancreas. To understand whether signal transducer and activator of transcription (STAT)-3 is involved in VEGF-A regulation and subsequent islet and microvascular network development, we generated a mouse line carrying pancreas-specific deletion of STAT3 (p-KO) and performed physiological analyses both in vivo and using isolated islets, including glucose and insulin tolerance tests, and insulin secretion measurements. We also studied microvascular network and islet development by using immunohistochemical methods. The p-KO mice exhibited glucose intolerance and impaired insulin secretion in vivo but normal insulin secretion in isolated islets. Microvascular density in the pancreas was reduced in p-KO mice, along with decreased expression of VEGF-A, but not other vasotropic factors in islets in the absence of pancreatic STAT3 signaling. Together, our study suggests that pancreatic STAT3 signaling is required for the normal development and maintenance of endocrine pancreas and islet microvascular network, possibly through its regulation of VEGF-A.


Assuntos
Intolerância à Glucose/fisiopatologia , Insulina/metabolismo , Pâncreas/irrigação sanguínea , Fator de Transcrição STAT3/metabolismo , Animais , Glicemia/metabolismo , Western Blotting , Cálcio/metabolismo , Feminino , Intolerância à Glucose/sangue , Imuno-Histoquímica , Insulina/sangue , Secreção de Insulina , Masculino , Camundongos , Camundongos Knockout , Neovascularização Fisiológica , Pâncreas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
J Biol Chem ; 284(6): 3719-27, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19049975

RESUMO

Leptin controls food intake and energy expenditure by regulating hypothalamic neuron activities. Leptin exerts its actions through complex signaling pathways including STAT3 phosphorylation, nuclear translocation, and binding to target gene promoter/cofactor complexes. Deficient or defective leptin signaling leads to obesity, which may be caused by insufficient leptin levels and/or resistance to leptin signaling. To understand the molecular mechanisms of leptin resistance, we studied the regulation of pro-opiomelanocortin (POMC) gene expression by leptin. We show that phospho-STAT3 activates POMC promoter in response to leptin signaling through a mechanism that requires an SP1-binding site in the POMC promoter. Furthermore, FoxO1 binds to STAT3 and prevents STAT3 from interacting with the SP1.POMC promoter complex, and consequently, inhibits STAT3-mediated leptin action. Our study suggests that leptin action could be inhibited at a step downstream of STAT3 phosphorylation and nuclear translocation, and provides a potential mechanism of leptin resistance in which an increased FoxO1 antagonizes STAT3-mediated leptin signaling.


Assuntos
Núcleo Celular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Leptina/farmacologia , Pró-Opiomelanocortina/biossíntese , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição Sp1/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Linhagem Celular , Proteína Forkhead Box O1 , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Leptina/metabolismo , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Regiões Promotoras Genéticas , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...